
The Final Poor Puzzle
Well done if you have made it this far! I have bad news, though… In real cryptography, it is almost
never the case that what makes a message insecure is the way it was encrypted. Normally, the
attacker knows exactly how a message was encrypted and also knows that it would be
impossible to decrypt the message without the key. What they attack is human error elsewhere.
This is certainly true in this week’s puzzle. I have opted for an encryption known to be
mathematically perfect, meaning that you can’t decrypt it without the key, which is as long as the
message and is randomly generated. So don’t just guess it! You can get the key by heading to
www.hobson.space/poor-print/three where you have to enter a password (only numerical digits of
length less than 100) to retrieve it; with this information, you know that there are �
possible passwords. If you could check 50 password a second, it would take � years to
check all possible passwords, bearing in mind that the universe has only been around for
� years; so really don’t just guess it… But as promised, I will tell you exactly how the
message was encrypted – as well as every other stage in this encryption system – with a
guarantee that there is a flaw!

How the Encryption Works
We first define our alphabet,

�

and define � to be the � element of our alphabet (this is 1-based, not 0-based). For each letter
we want to encode, we take the index, � , and generate a random key, � . We then use these in the
function:

 �

In case you are unfamiliar, � is the remainder when we calculate � , so, for example,

� , � , � , etc. This means that to find the letter, we take the
cipher number, say 5, we take the key, say 7, and we do � so in our example,
�

There is a different key for each letter in the cipher. What you just read in this section was a
hideously complicated way of saying that we shift each letter the amount specified by the key, so
A with key 2 = C… In my defence, I said I would explain exactly how it worked…

Getting the Key
In order to get the key, you can head to http://www.hobson.space/poor-print/three, where you can
enter a password in return for the key. There is only one password which consists of numbers and
is between 1 and 100 digits long. I will now explain how the password checker works. The
potential password is stored in a list, for example, the password ‘13728’ would be in a list that
looks like [1,3,7,2,8]. This is then checked against the real password. Now for some more detail!

The old way of computing lists would be to allocate � blocks of memory next to each other and
store the address of the first block; so, say we stored the word “hello”, we would allocate 5 blocks
of memory and store the address of the first in a variable called � . So the value at address
� is ‘h’, the value at address � is ‘e’ and the value at address � is ‘o’.

Sadly, there is a problem with this way of storing lists. What if we don’t know how big the string of
text will be? We can’t know how much memory to allocate, and reallocation is a mess. To solve
this, we use linked lists: each element of the lists is stored as a pair � , where next
is the address of the next pair. This way, we do not need to pre-allocate memory because the
pairs can be distributed through memory. At each point in the linked list, we say that the pair we

1.11 × 1099

7 × 1089

1.4 × 1010

Σ = [A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, . , , /]
Σi ith

i k

E : ⟨i, k⟩ ↦ i + k mod 30
a mod b

a
b

5 mod 6 = 5 6 mod 6 = 0 7 mod 6 = 1
Em−k mod 30

Σ5−7 mod 30 = '.'

n

text
text text + 1 text + 4

(element, next)

http://www.hobson.space/poor-print/three
http://www.hobson.space/poor-print/three

are considering is the head of the list, and the rest of the lists (accessed by following where �
points) is the tail. So in our example ‘hello’, ‘h’ is the head and ‘ello’ is the tail. When we follow the
link to ‘e’, we can no longer access ‘h’, so we call ‘e’ the head, and ‘llo’ the tail. The end of the
lists is indicated by setting �

In the password checker online, I chose to use Haskell because it is a very secure language. For
reasons too complicated to explain in this brief outline, its default implementation of lists is linked
lists. The password checker is implemented somewhat like this:

where � is the password and � is the text that the user (you) thinks is the password. The
subscripts � and � represent the head and tail of the lists. The code is a little more complicated
than this, but this is the general idea.

The Cipher Text
18,1,26,4,20,5,19,20,21,0,10,27,19,18,5,23,20,25,13,6,11,3,5,29,22,20,13,18,17,29,28,21,9,27,26,
10,8,9,7,5,26,23,16,26,17,12,16,2,28,8,2,20,15,13,12,3,3,14,4,8,25,17,22,19,24,11,6,20,21,10,3,1
1,27,7,2,5,26,14,12,3,23,24,10,5,9,19,14,26,14,2,6,12,6,2,6,17,21,11,3,6,21,2,21,8,8,15,13,17,16,
6,4,29,11,15,1,21,16,0,8,22,11,19,19,9,4,26,13,20,0,10,14,4,3,22,3,21,23,14,9,25,5,26,4,27,0,10,8
,26,22,7,24,2,9,20,28,27,28,25,20,22,9,25,13,28,10,26,11

In this is hidden the web address of part two (type it into your browser in lower case). Good Luck!

next

next = 0

p x
h t

checker⟨(ph, pt), (xh, xt)⟩ ↦

False ph ≠ xh

False pt = 0 ≠ xt ∨ xt = 0 ≠ pt

True pt = xt = 0 ∧ ph = xh

checker⟨pt, xt⟩ other wise

